Towards Democratizing Joint-Embedding Self-Supervised Learning

3 Mar 2023  ·  Florian Bordes, Randall Balestriero, Pascal Vincent ·

Joint Embedding Self-Supervised Learning (JE-SSL) has seen rapid developments in recent years, due to its promise to effectively leverage large unlabeled data. The development of JE-SSL methods was driven primarily by the search for ever increasing downstream classification accuracies, using huge computational resources, and typically built upon insights and intuitions inherited from a close parent JE-SSL method. This has led unwittingly to numerous pre-conceived ideas that carried over across methods e.g. that SimCLR requires very large mini batches to yield competitive accuracies; that strong and computationally slow data augmentations are required. In this work, we debunk several such ill-formed a priori ideas in the hope to unleash the full potential of JE-SSL free of unnecessary limitations. In fact, when carefully evaluating performances across different downstream tasks and properly optimizing hyper-parameters of the methods, we most often -- if not always -- see that these widespread misconceptions do not hold. For example we show that it is possible to train SimCLR to learn useful representations, while using a single image patch as negative example, and simple Gaussian noise as the only data augmentation for the positive pair. Along these lines, in the hope to democratize JE-SSL and to allow researchers to easily make more extensive evaluations of their methods, we introduce an optimized PyTorch library for SSL.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods