Uniform State Abstraction For Reinforcement Learning

6 Apr 2020 John Burden Daniel Kudenko

Potential Based Reward Shaping combined with a potential function based on appropriately defined abstract knowledge has been shown to significantly improve learning speed in Reinforcement Learning. MultiGrid Reinforcement Learning (MRL) has further shown that such abstract knowledge in the form of a potential function can be learned almost solely from agent interaction with the environment... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper