ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs

17 Feb 2024  ·  Yuhan Li, Peisong Wang, ZHIXUN LI, Jeffrey Xu Yu, Jia Li ·

With the development of foundation models such as large language models, zero-shot transfer learning has become increasingly significant. This is highlighted by the generative capabilities of NLP models like GPT-4, and the retrieval-based approaches of CV models like CLIP, both of which effectively bridge the gap between seen and unseen data. In the realm of graph learning, the continuous emergence of new graphs and the challenges of human labeling also amplify the necessity for zero-shot transfer learning, driving the exploration of approaches that can generalize across diverse graph data without necessitating dataset-specific and label-specific fine-tuning. In this study, we extend such paradigms to zero-shot transferability in graphs by introducing ZeroG, a new framework tailored to enable cross-dataset generalization. Addressing the inherent challenges such as feature misalignment, mismatched label spaces, and negative transfer, we leverage a language model to encode both node attributes and class semantics, ensuring consistent feature dimensions across datasets. We also propose a prompt-based subgraph sampling module that enriches the semantic information and structure information of extracted subgraphs using prompting nodes and neighborhood aggregation, respectively. We further adopt a lightweight fine-tuning strategy that reduces the risk of overfitting and maintains the zero-shot learning efficacy of the language model. The results underscore the effectiveness of our model in achieving significant cross-dataset zero-shot transferability, opening pathways for the development of graph foundation models. Codes and data are available at https://github.com/NineAbyss/ZeroG.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods