no code implementations • 10 Jul 2022 • Kunal Dahiya, Nilesh Gupta, Deepak Saini, Akshay Soni, Yajun Wang, Kushal Dave, Jian Jiao, Gururaj K, Prasenjit Dey, Amit Singh, Deepesh Hada, Vidit Jain, Bhawna Paliwal, Anshul Mittal, Sonu Mehta, Ramachandran Ramjee, Sumeet Agarwal, Purushottam Kar, Manik Varma
This paper identifies that memory overheads of popular negative mining techniques often force mini-batch sizes to remain small and slow training down.
no code implementations • CVPR 2022 • Anshul Mittal, Kunal Dahiya, Shreya Malani, Janani Ramaswamy, Seba Kuruvilla, Jitendra Ajmera, Keng-hao Chang, Sumeet Agarwal, Purushottam Kar, Manik Varma
On the other hand, XC methods utilize classifier architectures to offer superior accuracies than embedding-only methods but mostly focus on text-based categorization tasks.
1 code implementation • 12 Nov 2021 • Kunal Dahiya, Deepak Saini, Anshul Mittal, Ankush Shaw, Kushal Dave, Akshay Soni, Himanshu Jain, Sumeet Agarwal, Manik Varma
Scalability and accuracy are well recognized challenges in deep extreme multi-label learning where the objective is to train architectures for automatically annotating a data point with the most relevant subset of labels from an extremely large label set.
1 code implementation • 1 Aug 2021 • Anshul Mittal, Kunal Dahiya, Sheshansh Agrawal, Deepak Saini, Sumeet Agarwal, Purushottam Kar, Manik Varma
This paper develops the DECAF algorithm that addresses these challenges by learning models enriched by label metadata that jointly learn model parameters and feature representations using deep networks and offer accurate classification at the scale of millions of labels.
1 code implementation • 31 Jul 2021 • Anshul Mittal, Noveen Sachdeva, Sheshansh Agrawal, Sumeet Agarwal, Purushottam Kar, Manik Varma
This paper presents ECLARE, a scalable deep learning architecture that incorporates not only label text, but also label correlations, to offer accurate real-time predictions within a few milliseconds.
2 code implementations • NeurIPS 2020 • Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, Prateek Jain
Standard Convolutional Neural Networks (CNNs) designed for computer vision tasks tend to have large intermediate activation maps.
Ranked #16 on
Face Detection
on WIDER Face (Medium)
no code implementations • 15 Jan 2020 • Yashoteja Prabhu, Aditya Kusupati, Nilesh Gupta, Manik Varma
This paper also introduces a (3) new labelwise prediction algorithm in XReg useful for DSA and other recommendation tasks.
1 code implementation • Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST'19) 2019 • Shishir G. Patil, Don Dennis, Chirag Pabbaraju, Nadeem Shaheer, Harsha Vardhan Simhadri, Vivek Seshadri, Manik Varma, Prateek Jain
Our in-lab study shows that GesturePod achieves 92% gesture recognition accuracy and can help perform common smartphone tasks faster.
Ranked #1 on
Gesture Recognition
on GesturePod
no code implementations • 25 Sep 2019 • Kunal Dahiya, Anshul Mittal, Deepak Saini, Kushal Dave, Himanshu Jain, Sumeet Agarwal, Manik Varma
The objective in deep extreme multi-label learning is to jointly learn feature representations and classifiers to automatically tag data points with the most relevant subset of labels from an extremely large label set.
1 code implementation • 6 Sep 2019 • Dhrubojyoti Roy, Sangeeta Srivastava, Aditya Kusupati, Pranshu Jain, Manik Varma, Anish Arora
Edge sensing with micro-power pulse-Doppler radars is an emergent domain in monitoring and surveillance with several smart city applications.
1 code implementation • NeurIPS 2018 • Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, Manik Varma
FastRNN addresses these limitations by adding a residual connection that does not constrain the range of the singular values explicitly and has only two extra scalar parameters.
1 code implementation • ICML 2017 • Ashish Kumar, Saurabh Goyal, Manik Varma
This paper develops a novel tree-based algorithm, called Bonsai, for efficient prediction on IoT devices – such as those based on the Arduino Uno board having an 8 bit ATmega328P microcontroller operating at 16 MHz with no native floating point support, 2 KB RAM and 32 KB read-only flash.
1 code implementation • ICML 2017 • Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, Prateek Jain
Such applications demand prediction models with small storage and computational complexity that do not compromise significantly on accuracy.
no code implementations • NeurIPS 2015 • Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, Prateek Jain
The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set.
no code implementations • 9 Jul 2015 • Kush Bhatia, Himanshu Jain, Purushottam Kar, Prateek Jain, Manik Varma
Embedding based approaches make training and prediction tractable by assuming that the training label matrix is low-rank and hence the effective number of labels can be reduced by projecting the high dimensional label vectors onto a low dimensional linear subspace.
Extreme Multi-Label Classification
General Classification
+2
no code implementations • NeurIPS 2010 • Zhaonan Sun, Nawanol Ampornpunt, Manik Varma, S. V. N. Vishwanathan
Our objective is to train $p$-norm Multiple Kernel Learning (MKL) and, more generally, linear MKL regularised by the Bregman divergence, using the Sequential Minimal Optimization (SMO) algorithm.