The Universal Dependencies (UD) project seeks to develop cross-linguistically consistent treebank annotation of morphology and syntax for multiple languages. The first version of the dataset was released in 2015 and consisted of 10 treebanks over 10 languages. Version 2.7 released in 2020 consists of 183 treebanks over 104 languages. The annotation consists of UPOS (universal part-of-speech tags), XPOS (language-specific part-of-speech tags), Feats (universal morphological features), Lemmas, dependency heads and universal dependency labels.
514 PAPERS • 5 BENCHMARKS
This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages. This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository.
110 PAPERS • NO BENCHMARKS YET
WikiANN, also known as PAN-X, is a multilingual named entity recognition dataset. It consists of Wikipedia articles that have been annotated with LOC (location), PER (person), and ORG (organization) tags in the IOB2 format¹². This dataset serves as a valuable resource for training and evaluating named entity recognition models across various languages.
69 PAPERS • 3 BENCHMARKS
OSCAR or Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. The dataset used for training multilingual models such as BART incorporates 138 GB of text.
64 PAPERS • NO BENCHMARKS YET
Multilingual Knowledge Questions and Answers (MKQA) is an open-domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages (260k question-answer pairs in total). The goal of this dataset is to provide a challenging benchmark for question answering quality across a wide set of languages. Answers are based on a language-independent data representation, making results comparable across languages and independent of language-specific passages. With 26 languages, this dataset supplies the widest range of languages to-date for evaluating question answering.
46 PAPERS • NO BENCHMARKS YET
license: apache-2.0 tags: human-feedback size_categories: 100K<n<1M pretty_name: OpenAssistant Conversations
24 PAPERS • NO BENCHMARKS YET
XGLUE is an evaluation benchmark XGLUE,which is composed of 11 tasks that span 19 languages. For each task, the training data is only available in English. This means that to succeed at XGLUE, a model must have a strong zero-shot cross-lingual transfer capability to learn from the English data of a specific task and transfer what it learned to other languages. Comparing to its concurrent work XTREME, XGLUE has two characteristics: First, it includes cross-lingual NLU and cross-lingual NLG tasks at the same time; Second, besides including 5 existing cross-lingual tasks (i.e. NER, POS, MLQA, PAWS-X and XNLI), XGLUE selects 6 new tasks from Bing scenarios as well, including News Classification (NC), Query-Ad Matching (QADSM), Web Page Ranking (WPR), QA Matching (QAM), Question Generation (QG) and News Title Generation (NTG). Such diversities of languages, tasks and task origin provide a comprehensive benchmark for quantifying the quality of a pre-trained model on cross-lingual natural lan
22 PAPERS • 2 BENCHMARKS
This data set is collected for the ERC project: The Hands that Wrote the Bible: Digital Palaeography and Scribal Culture of the Dead Sea Scrolls PI: Mladen Popović Grant agreement ID: 640497
5 PAPERS • NO BENCHMARKS YET
Targeted syntactic evaluation datasets in 5 languages: English, French, German, Russian, and Hebrew. Data are translated from the targeted syntactic evaluation data of Marvin & Linzen (2018): https://aclanthology.org/D18-1151/ . All stimuli focus on subject-verb agreement.
MuMiN is a misinformation graph dataset containing rich social media data (tweets, replies, users, images, articles, hashtags), spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade.
5 PAPERS • 3 BENCHMARKS
ParaShoot is the first question answering dataset in modern Hebrew. The dataset follows the format and crowdsourcing methodology of SQuAD, and contains approximately 3000 annotated examples, similar to other question-answering datasets in low-resource languages.
4 PAPERS • NO BENCHMARKS YET
Named Entity (NER) annotations of the Hebrew Treebank (Haaretz newspaper) corpus, including: morpheme and token level NER labels, nested mentions, and more. We publish the NEMO corpus in the TACL paper "Neural Modeling for Named Entities and Morphology (NEMO^2)" [1], where we use it in extensive experiments and analyses, showing the importance of morphological boundaries for neural modeling of NER in morphologically rich languages. Code for these models and experiments can be found in the NEMO code repo.
3 PAPERS • 3 BENCHMARKS
Training data for Hebrew morphological word segmentation
2 PAPERS • 1 BENCHMARK
HALvest is a textual dataset comprising 17 billion tokens in 56 languages and 13 domains.
1 PAPER • NO BENCHMARKS YET
While large language models (LLMs) excel in various natural language tasks in English, their performance in lower-resourced languages like Hebrew, especially for generative tasks such as abstractive summarization, remains unclear. The high morphological richness in Hebrew adds further challenges due to the ambiguity in sentence comprehension and the complexities in meaning construction. In this paper, we address this resource and evaluation gap by introducing HeSum, a novel benchmark specifically designed for abstractive text summarization in Modern Hebrew. HeSum consists of 10,000 article-summary pairs sourced from Hebrew news websites written by professionals. Linguistic analysis confirms HeSum's high abstractness and unique morphological challenges. We show that HeSum presents distinct difficulties for contemporary state-of-the-art LLMs, establishing it as a valuable testbed for generative language technology in Hebrew, and MRLs generative challenges in general.
Dataset Summary INCLUDE is a comprehensive knowledge- and reasoning-centric benchmark across 44 languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed. It contains 22,637 4-option multiple-choice-questions (MCQ) extracted from academic and professional exams, covering 57 topics, including regional knowledge.
Mega-COV is a billion-scale dataset from Twitter for studying COVID-19. The dataset is diverse (covers 234 countries), longitudinal (goes as back as 2007), multilingual (comes in 65 languages), and has a significant number of location-tagged tweets (~32M tweets).
Modern Hebrew Sentiment Dataset is a sentiment analysis benchmark for Hebrew, based on 12K social media comments, and provide two instances of these data: in token-based and morpheme-based settings.
Diacritized texts in Modern Hebrew, collected from eleven different sources. Diacritized using Ktiv Male conventions.
A collection of diacritized Hebrew text in a variety of registers and from different sources.
PolyNews is a multilingual dataset containing news titles in 77 languages and 19 scripts.
PolyNews is a multilingual parallel dataset containing news titles 833 language pairs, spanning in 64 languages and 17 scripts.
1 PAPER • 1 BENCHMARK