Analysis of Q-learning with Adaptation and Momentum Restart for Gradient Descent

15 Jul 2020 Bowen Weng Huaqing Xiong Yingbin Liang Wei zhang

Existing convergence analyses of Q-learning mostly focus on the vanilla stochastic gradient descent (SGD) type of updates. Despite the Adaptive Moment Estimation (Adam) has been commonly used for practical Q-learning algorithms, there has not been any convergence guarantee provided for Q-learning with such type of updates... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper