FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours

2 Mar 2022  ·  Shenggan Cheng, Ruidong Wu, Zhongming Yu, Binrui Li, Xiwen Zhang, Jian Peng, Yang You ·

Protein structure prediction is an important method for understanding gene translation and protein function in the domain of structural biology. AlphaFold introduced the Transformer model to the field of protein structure prediction with atomic accuracy. However, training and inference of the AlphaFold model are time-consuming and expensive because of the special performance characteristics and huge memory consumption. In this paper, we propose FastFold, a highly efficient implementation of the protein structure prediction model for training and inference. FastFold includes a series of GPU optimizations based on a thorough analysis of AlphaFold's performance. Meanwhile, with Dynamic Axial Parallelism and Duality Async Operation, FastFold achieves high model parallelism scaling efficiency, surpassing existing popular model parallelism techniques. Experimental results show that FastFold reduces overall training time from 11 days to 67 hours and achieves 7.5-9.5X speedup for long-sequence inference. Furthermore, We scaled FastFold to 512 GPUs and achieved an aggregate of 6.02 PetaFLOPs with 90.1% parallel efficiency. The implementation can be found at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.