Grasp-Anything: Large-scale Grasp Dataset from Foundation Models

18 Sep 2023  ·  An Dinh Vuong, Minh Nhat Vu, Hieu Le, Baoru Huang, Binh Huynh, Thieu Vo, Andreas Kugi, Anh Nguyen ·

Foundation models such as ChatGPT have made significant strides in robotic tasks due to their universal representation of real-world domains. In this paper, we leverage foundation models to tackle grasp detection, a persistent challenge in robotics with broad industrial applications. Despite numerous grasp datasets, their object diversity remains limited compared to real-world figures. Fortunately, foundation models possess an extensive repository of real-world knowledge, including objects we encounter in our daily lives. As a consequence, a promising solution to the limited representation in previous grasp datasets is to harness the universal knowledge embedded in these foundation models. We present Grasp-Anything, a new large-scale grasp dataset synthesized from foundation models to implement this solution. Grasp-Anything excels in diversity and magnitude, boasting 1M samples with text descriptions and more than 3M objects, surpassing prior datasets. Empirically, we show that Grasp-Anything successfully facilitates zero-shot grasp detection on vision-based tasks and real-world robotic experiments. Our dataset and code are available at https://grasp-anything-2023.github.io.

PDF Abstract

Datasets


Introduced in the Paper:

Grasp-Anything

Used in the Paper:

Cornell OCID VMRD

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here