Angel-PTM: A Scalable and Economical Large-scale Pre-training System in Tencent

6 Mar 2023  ·  Xiaonan Nie, Yi Liu, Fangcheng Fu, Jinbao Xue, Dian Jiao, Xupeng Miao, Yangyu Tao, Bin Cui ·

Recent years have witnessed the unprecedented achievements of large-scale pre-trained models, especially the Transformer models. Many products and services in Tencent Inc., such as WeChat, QQ, and Tencent Advertisement, have been opted in to gain the power of pre-trained models. In this work, we present Angel-PTM, a productive deep learning system designed for pre-training and fine-tuning Transformer models. Angel-PTM can train extremely large-scale models with hierarchical memory efficiently. The key designs of Angel-PTM are the fine-grained memory management via the Page abstraction and a unified scheduling method that coordinate the computations, data movements, and communications. Furthermore, Angel-PTM supports extreme model scaling with SSD storage and implements the lock-free updating mechanism to address the SSD I/O bandwidth bottlenecks. Experimental results demonstrate that Angel-PTM outperforms existing systems by up to 114.8% in terms of maximum model scale as well as up to 88.9% in terms of training throughput. Additionally, experiments on GPT3-175B and T5-MoE-1.2T models utilizing hundreds of GPUs verify the strong scalability of Angel-PTM.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods