MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining

Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks. Pretraining is an active research topic, encompassing supervised and self-supervised learning methods to initialize model weights effectively. However, transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks. In this study, we explore the Multi-Task Pretraining (MTP) paradigm for RS foundation models to address this issue. Using a shared encoder and task-specific decoder architecture, we conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection. MTP supports both convolutional neural networks and vision transformer foundation models with over 300 million parameters. The pretrained models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection. Extensive experiments across 14 datasets demonstrate the superiority of our models over existing ones of similar size and their competitive performance compared to larger state-of-the-art models, thus validating the effectiveness of MTP.

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Uses Extra
Training Data
Benchmark
Change detection for remote sensing images CDD Dataset (season-varying) MAE+MTP(ViT-L+RVSA) F1-Score 0.9798 # 3
Change Detection CDD Dataset (season-varying) MAE+MTP(ViT-B+RVSA) F1-Score 97.87 # 5
Change Detection CDD Dataset (season-varying) MAE+MTP(ViT-L+RVSA) F1-Score 97.98 # 3
Change Detection CDD Dataset (season-varying) IMP+MTP(InternImage-XL) F1-Score 98.33 # 2
Change detection for remote sensing images CDD Dataset (season-varying) IMP+MTP(InternImage-XL) F1-Score 0.9833 # 2
Change detection for remote sensing images CDD Dataset (season-varying) MAE+MTP(ViT-B+RVSA) F1-Score 0.9787 # 4
Object Detection In Aerial Images DIOR IMP+MTP(InternImage-XL) AP50 78.0 # 3
Object Detection In Aerial Images DIOR MAE+MTP(ViT-B+RVSA) AP50 79.4 # 2
Object Detection In Aerial Images DIOR MAE+MTP(ViT-L+RVSA) AP50 81.1 # 1
Object Detection In Aerial Images DIOR-R IMP+MTP(InternImage-XL) mAP 72.17 # 3
Object Detection In Aerial Images DIOR-R MAE+MTP(ViT-L+RVSA) mAP 74.54 # 1
Object Detection In Aerial Images DIOR-R MAE+MTP(ViT-B+RVSA) mAP 71.29 # 4
Object Detection In Aerial Images DOTA IMP+MTP(InternImage-XL) mAP 80.77% # 13
Object Detection In Aerial Images DOTA MAE+MTP(ViT-B+RVSA) mAP 80.67% # 15
Object Detection In Aerial Images DOTA MAE+MTP(ViT-L+RVSA) mAP 81.66% # 7
Oriented Object Detection DOTA 1.0 MAE+MTP(ViT-L+RVSA) mAP 81.66 # 4
Oriented Object Detection DOTA 2.0 MAE+MTP(ViT-L+RVSA) mAP 58.41 # 3
Oriented Object Detection DOTA 2.0 MAE+MTP(ViT-B+RVSA) mAP 56.08 # 5
Oriented Object Detection DOTA 2.0 IMP+MTP(InternImage-XL) mAP 55.13 # 6
Image Classification EuroSAT MAE+MTP(ViT-B+RVSA) Accuracy (%) 98.76 # 9
Image Classification EuroSAT IMP+MTP(IntenImage-XL) Accuracy (%) 99.24 # 1
Image Classification EuroSAT MAE+MTP(ViT-L+RVSA) Accuracy (%) 98.78 # 7
Object Detection In Aerial Images FAIR1M-2.0 MAE+MTP(ViT-B+RVSA) mAP 51.92 # 2
Object Detection In Aerial Images FAIR1M-2.0 IMP+MTP(InternImage-XL) mAP 50.93 # 3
Object Detection In Aerial Images FAIR1M-2.0 MAE+MTP(ViT-L+RVSA) mAP 53.00 # 1
Building change detection for remote sensing images LEVIR-CD MAE+MTP(ViT-L+RVSA) F1 92.67 # 1
Params(M) 305 # 9
Building change detection for remote sensing images LEVIR-CD MAE+MTP(ViT-B+RVSA) F1 92.22 # 5
Params(M) 86 # 8
Building change detection for remote sensing images LEVIR-CD IMP+MTP(InternImage-XL) F1 92.54 # 2
Params(M) 335 # 10
Change Detection LEVIR-CD IMP+MTP(InternImage-XL) F1 92.54 # 2
Change Detection LEVIR-CD MAE+MTP(ViT-L+RVSA) F1 92.67 # 1
Change Detection LEVIR-CD MAE+MTP(ViT-B+RVSA) F1 92.22 # 6
Semantic Segmentation LoveDA IMP+MTP(InternImage-XL) Category mIoU 54.17 # 5
Semantic Segmentation LoveDA MAE+MTP(ViT-L+RVSA) Category mIoU 54.17 # 5
Semantic Segmentation LoveDA MAE+MTP(ViT-B+RVSA) Category mIoU 52.39 # 15
Aerial Scene Classification NWPU (20% as trainset) IMP+MTP(InternImage-XL) Accuracy 96.27 # 1
Aerial Scene Classification NWPU (20% as trainset) MAE+MTP(ViT-L+RVSA) Accuracy 95.88 # 2
Aerial Scene Classification NWPU (20% as trainset) MAE+MTP(ViT-B+RVSA) Accuracy 95.57 # 6
Change Detection OSCD - 3ch IMP+MTP(InternImage-XL) F1 55.61 # 2
Change Detection OSCD - 3ch MAE+MTP(ViT-B+RVSA) F1 53.36 # 3
Change Detection OSCD - 3ch MAE+MTP(ViT-L+RVSA) F1 55.92 # 1
Semantic Segmentation SpaceNet 1 IMP+MTP(InternImage-XL) Mean IoU 79.16 # 5
Semantic Segmentation SpaceNet 1 MAE+MTP(ViT-L) Mean IoU 79.69 # 1
Semantic Segmentation SpaceNet 1 MAE+MTP(ViT-B+RVSA) Mean IoU 79.63 # 2
Semantic Segmentation SpaceNet 1 MAE+MTP(ViT-L+RVSA) Mean IoU 79.54 # 3
Change Detection WHU Building Dataset IMP+MTP(InternImage-XL) F1-score 0.9559 # 1
Change Detection WHU Building Dataset MAE+MTP(ViT-L+RVSA) F1-score 0.9475 # 3
Change Detection WHU Building Dataset MAE+MTP(ViT-B+RVSA) F1-score 0.9432 # 5
Object Detection In Aerial Images xView MAE+MTP(ViT-L+RVSA) AP50 19.4 # 1
Object Detection In Aerial Images xView IMP+MTP(InternImage-XL) AP50 18.2 # 2
Object Detection In Aerial Images xView MAE+MTP(ViT-B+RVSA) AP50 16.4 # 3

Methods