Search Results for author: Todd Hester

Found 11 papers, 6 papers with code

ETA Prediction with Graph Neural Networks in Google Maps

no code implementations25 Aug 2021 Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, Petar Veličković

Travel-time prediction constitutes a task of high importance in transportation networks, with web mapping services like Google Maps regularly serving vast quantities of travel time queries from users and enterprises alike.

Graph Representation Learning

An empirical investigation of the challenges of real-world reinforcement learning

1 code implementation24 Mar 2020 Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, Todd Hester

We believe that an approach that addresses our set of proposed challenges would be readily deployable in a large number of real world problems.

Continuous Control reinforcement-learning

Robust Reinforcement Learning for Continuous Control with Model Misspecification

no code implementations ICLR 2020 Daniel J. Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas Abdolmaleki, Jost Tobias Springenberg, Timothy Mann, Todd Hester, Martin Riedmiller

We provide a framework for incorporating robustness -- to perturbations in the transition dynamics which we refer to as model misspecification -- into continuous control Reinforcement Learning (RL) algorithms.

Continuous Control reinforcement-learning

Towards Consistent Performance on Atari using Expert Demonstrations

no code implementations ICLR 2019 Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel Barth-Maron, Hado van Hasselt, John Quan, Mel Večerík, Matteo Hessel, Rémi Munos, Olivier Pietquin

Despite significant advances in the field of deep Reinforcement Learning (RL), today's algorithms still fail to learn human-level policies consistently over a set of diverse tasks such as Atari 2600 games.

Atari Games

Challenges of Real-World Reinforcement Learning

1 code implementation29 Apr 2019 Gabriel Dulac-Arnold, Daniel Mankowitz, Todd Hester

Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is beginning to show some successes in real-world scenarios.

reinforcement-learning

A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning

no code implementations2 Oct 2018 Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd Hester, Jon Scholz

Insertion is a challenging haptic and visual control problem with significant practical value for manufacturing.

Robotics

Observe and Look Further: Achieving Consistent Performance on Atari

1 code implementation29 May 2018 Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel Barth-Maron, Hado van Hasselt, John Quan, Mel Večerík, Matteo Hessel, Rémi Munos, Olivier Pietquin

Despite significant advances in the field of deep Reinforcement Learning (RL), today's algorithms still fail to learn human-level policies consistently over a set of diverse tasks such as Atari 2600 games.

Montezuma's Revenge

Safe Exploration in Continuous Action Spaces

3 code implementations26 Jan 2018 Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, Yuval Tassa

We address the problem of deploying a reinforcement learning (RL) agent on a physical system such as a datacenter cooling unit or robot, where critical constraints must never be violated.

Safe Exploration

Deep Q-learning from Demonstrations

5 code implementations12 Apr 2017 Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, Audrunas Gruslys

We present an algorithm, Deep Q-learning from Demonstrations (DQfD), that leverages small sets of demonstration data to massively accelerate the learning process even from relatively small amounts of demonstration data and is able to automatically assess the necessary ratio of demonstration data while learning thanks to a prioritized replay mechanism.

Decision Making Imitation Learning +1

Adaptive Lambda Least-Squares Temporal Difference Learning

no code implementations30 Dec 2016 Timothy A. Mann, Hugo Penedones, Shie Mannor, Todd Hester

Temporal Difference learning or TD($\lambda$) is a fundamental algorithm in the field of reinforcement learning.

Cannot find the paper you are looking for? You can Submit a new open access paper.