Search Results for author: Yuchen Xu

Found 7 papers, 1 papers with code

Anomaly Detection in Electrocardiograms: Advancing Clinical Diagnosis Through Self-Supervised Learning

no code implementations7 Apr 2024 Aofan Jiang, Chaoqin Huang, Qing Cao, Yuchen Xu, Zi Zeng, Kang Chen, Ya zhang, Yanfeng Wang

We introduce a novel self-supervised learning framework for ECG AD, utilizing a vast dataset of normal ECGs to autonomously detect and localize cardiac anomalies.

Self-Supervised Anomaly Detection Self-Supervised Learning +2

Accelerating Distributed Deep Learning using Lossless Homomorphic Compression

1 code implementation12 Feb 2024 Haoyu Li, Yuchen Xu, Jiayi Chen, Rohit Dwivedula, Wenfei Wu, Keqiang He, Aditya Akella, Daehyeok Kim

As deep neural networks (DNNs) grow in complexity and size, the resultant increase in communication overhead during distributed training has become a significant bottleneck, challenging the scalability of distributed training systems.

Computational Efficiency

Outlier Guided Optimization of Abdominal Segmentation

no code implementations10 Feb 2020 Yuchen Xu, Olivia Tang, Yucheng Tang, Ho Hin Lee, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman

We built on a pre-trained 3D U-Net model for abdominal multi-organ segmentation and augmented the dataset either with outlier data (e. g., exemplars for which the baseline algorithm failed) or inliers (e. g., exemplars for which the baseline algorithm worked).

Active Learning Computed Tomography (CT) +2

Contrast Phase Classification with a Generative Adversarial Network

no code implementations14 Nov 2019 Yucheng Tang, Ho Hin Lee, Yuchen Xu, Olivia Tang, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Camilo Bermudez, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman

Dynamic contrast enhanced computed tomography (CT) is an imaging technique that provides critical information on the relationship of vascular structure and dynamics in the context of underlying anatomy.

Anatomy Classification +4

Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision

no code implementations12 Nov 2019 Ho Hin Lee, Yucheng Tang, Olivia Tang, Yuchen Xu, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman

The contributions of the proposed method are threefold: We show that (1) the QA scores can be used as a loss function to perform semi-supervised learning for unlabeled data, (2) the well trained discriminator is learnt by QA score rather than traditional true/false, and (3) the performance of multi-organ segmentation on unlabeled datasets can be fine-tuned with more robust and higher accuracy than the original baseline method.

Image Segmentation Medical Image Segmentation +3

Cannot find the paper you are looking for? You can Submit a new open access paper.