Search Results for author: Lu Liu

Found 46 papers, 20 papers with code

MRecGen: Multimodal Appropriate Reaction Generator

no code implementations5 Jul 2023 Jiaqi Xu, Cheng Luo, Weicheng Xie, Linlin Shen, Xiaofeng Liu, Lu Liu, Hatice Gunes, Siyang Song

Verbal and non-verbal human reaction generation is a challenging task, as different reactions could be appropriate for responding to the same behaviour.

Reversible Graph Neural Network-based Reaction Distribution Learning for Multiple Appropriate Facial Reactions Generation

1 code implementation24 May 2023 Tong Xu, Micol Spitale, Hao Tang, Lu Liu, Hatice Gunes, Siyang Song

This means that we approach this problem by considering the generation of a distribution of the listener's appropriate facial reactions instead of multiple different appropriate facial reactions, i. e., 'many' appropriate facial reaction labels are summarised as 'one' distribution label during training.

One-Bit Massive MIMO Precoding for Frequency-Selective Fading Channels

no code implementations20 Mar 2023 Ly V. Nguyen, Lu Liu, Nguyen Linh-Trung, A. Lee Swindlehurst

While block-wise processing (BWP) can effectively address the inter-symbol-interference (ISI) in frequency-selective fading channels, its computational complexity and processing delay can be too high for practical implementation.

Bokeh Rendering Based on Adaptive Depth Calibration Network

no code implementations21 Feb 2023 Lu Liu, Lei Zhou, Yuhan Dong

This allows the camera to capture images with shallow depth-of-field, in which only a small area of the image is in sharp focus, while the rest of the image is blurred.

Monocular Depth Estimation

Robust Symbol Level Precoding for Overlay Cognitive Radio Networks

no code implementations20 Jan 2023 Lu Liu, Christos Masouros, A. Lee Swindlehurst

This paper focuses on designing robust symbol-level precoding (SLP) in an overlay cognitive radio (CR) network, where the primary and secondary networks transmit signals concurrently.

Philosophy Quantization

Document-level Relation Extraction with Relation Correlations

1 code implementation20 Dec 2022 Ridong Han, Tao Peng, Benyou Wang, Lu Liu, Xiang Wan

Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem.

Document-level Relation Extraction

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

3 code implementations9 Nov 2022 BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Daniel McDuff, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.

Language Modelling Multilingual NLP

Federated Learning from Pre-Trained Models: A Contrastive Learning Approach

2 code implementations21 Sep 2022 Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, Jing Jiang

To prevent these issues from hindering the deployment of FL systems, we propose a lightweight framework where clients jointly learn to fuse the representations generated by multiple fixed pre-trained models rather than training a large-scale model from scratch.

Contrastive Learning Federated Learning

The least-used key selection method for information retrieval in large-scale Cloud-based service repositories

no code implementations16 Aug 2022 Jiayan Gu, Ashiq Anjum, Yan Wu, Lu Liu, John Panneerselvam, Yao Lu, Bo Yuan

The experimental results show that the proposed least-used key selection method improves the service retrieval efficiency significantly compared with the designated key selection method in the case of the unequal appearing probability of parameters in service retrieval requests under three indexing models.

Information Retrieval Management +1

Distributed Optimal Output Consensus of Uncertain Nonlinear Multi-Agent Systems over Unbalanced Directed Networks via Output Feedback

no code implementations16 Nov 2021 Jin Zhang, Lu Liu, Xinghu Wang, Haibo Ji

In this note, a novel observer-based output feedback control approach is proposed to address the distributed optimal output consensus problem of uncertain nonlinear multi-agent systems in the normal form over unbalanced directed graphs.

Full-Cycle Energy Consumption Benchmark for Low-Carbon Computer Vision

no code implementations30 Aug 2021 Bo Li, Xinyang Jiang, Donglin Bai, Yuge Zhang, Ningxin Zheng, Xuanyi Dong, Lu Liu, Yuqing Yang, Dongsheng Li

The energy consumption of deep learning models is increasing at a breathtaking rate, which raises concerns due to potential negative effects on carbon neutrality in the context of global warming and climate change.

Model Compression

Distantly Supervised Relation Extraction via Recursive Hierarchy-Interactive Attention and Entity-Order Perception

1 code implementation18 May 2021 Ridong Han, Tao Peng, Jiayu Han, Hai Cui, Lu Liu

Based on the above, in this paper, we design a novel Recursive Hierarchy-Interactive Attention network (RHIA) to further handle long-tail relations, which models the heuristic effect between relation levels.

Relation Extraction

Human Object Interaction Detection using Two-Direction Spatial Enhancement and Exclusive Object Prior

no code implementations7 May 2021 Lu Liu, Robby T. Tan

At inference, we propose a human-object regrouping approach by considering the object-exclusive property of an action, where the target object should not be shared by more than one human.

Human-Object Interaction Detection

FedProto: Federated Prototype Learning across Heterogeneous Clients

3 code implementations1 May 2021 Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, Chengqi Zhang

Heterogeneity across clients in federated learning (FL) usually hinders the optimization convergence and generalization performance when the aggregation of clients' knowledge occurs in the gradient space.

Federated Learning

Isometric Propagation Network for Generalized Zero-shot Learning

no code implementations ICLR 2021 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Xuanyi Dong, Chengqi Zhang

To resolve this problem, we propose Isometric Propagation Network (IPN), which learns to strengthen the relation between classes within each space and align the class dependency in the two spaces.

Generalized Zero-Shot Learning

Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task

no code implementations24 Jan 2021 Xiaohan Zhang, Lu Liu, Guodong Long, Jing Jiang, Shenquan Liu

Typical methods to study cognitive function are to record the electrical activities of animal neurons during the training of animals performing behavioral tasks.

Decision Making Hippocampus +3

Free Lunch for Few-shot Learning: Distribution Calibration

5 code implementations ICLR 2021 Shuo Yang, Lu Liu, Min Xu

In this paper, we calibrate the distribution of these few-sample classes by transferring statistics from the classes with sufficient examples, then an adequate number of examples can be sampled from the calibrated distribution to expand the inputs to the classifier.

Few-Shot Learning

MASP: Model-Agnostic Sample Propagation for Few-shot learning

no code implementations1 Jan 2021 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Xuanyi Dong, Chengqi Zhang

Few-shot learning aims to train a classifier given only a few samples per class that are highly insufficient to describe the whole data distribution.

Few-Shot Learning

Real-Time AutoML

no code implementations1 Jan 2021 Iddo Drori, Brandon Kates, Anant Kharkar, Lu Liu, Qiang Ma, Jonah Deykin, Nihar Sidhu, Madeleine Udell

We train a graph neural network in which each node represents a dataset to predict the best machine learning pipeline for a new test dataset.

AutoML BIG-bench Machine Learning +1

Cross-Lingual Dependency Parsing by POS-Guided Word Reordering

no code implementations Findings of the Association for Computational Linguistics 2020 Lu Liu, Yi Zhou, Jianhan Xu, Xiaoqing Zheng, Kai-Wei Chang, Xuanjing Huang

The words in each sentence of a source language corpus are rearranged to meet the word order in a target language under the guidance of a part-of-speech based language model (LM).

Dependency Parsing Language Modelling +1

Attribute Propagation Network for Graph Zero-shot Learning

no code implementations24 Sep 2020 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on the training classes can be adapted to unseen classes.

Meta-Learning Zero-Shot Learning

Improving Coreference Resolution by Leveraging Entity-Centric Features with Graph Neural Networks and Second-order Inference

no code implementations10 Sep 2020 Lu Liu, Zhenqiao Song, Xiaoqing Zheng, Jun He

One of the major challenges in coreference resolution is how to make use of entity-level features defined over clusters of mentions rather than mention pairs.

coreference-resolution

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

2 code implementations28 Aug 2020 Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys

In this paper, we propose NATS-Bench, a unified benchmark on searching for both topology and size, for (almost) any up-to-date NAS algorithm.

Benchmarking Neural Architecture Search

Two-dimensional ferromagnetic semiconductor VBr3 with tunable anisotropy

no code implementations20 Aug 2020 Lu Liu, Ke Yang, Guangyu Wang, Hua Wu

Two-dimensional (2D) ferromagnets (FMs) have attracted widespread attention due to their prospects in spintronic applications.

Materials Science Strongly Correlated Electrons

Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy

1 code implementation28 Jun 2020 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

We study many-class few-shot (MCFS) problem in both supervised learning and meta-learning settings.

Few-Shot Learning

Interpretable Time-series Classification on Few-shot Samples

1 code implementation3 Jun 2020 Wensi Tang, Lu Liu, Guodong Long

Recent few-shot learning works focus on training a model with prior meta-knowledge to fast adapt to new tasks with unseen classes and samples.

Classification Few-Shot Learning +4

Learning Structured Embeddings of Knowledge Graphs with Adversarial Learning Framework

no code implementations15 Apr 2020 Jiehang Zeng, Lu Liu, Xiaoqing Zheng

A generative network (GN) takes two elements of a (subject, predicate, object) triple as input and generates the vector representation of the missing element.

General Classification Link Prediction +3

Omni-Scale CNNs: a simple and effective kernel size configuration for time series classification

3 code implementations ICLR 2022 Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Michael Blumenstein, Jing Jiang

Particularly, it is a set of kernel sizes that can efficiently cover the best RF size across different datasets via consisting of multiple prime numbers according to the length of the time series.

General Classification Time Series +2

AutoML using Metadata Language Embeddings

2 code implementations8 Oct 2019 Iddo Drori, Lu Liu, Yi Nian, Sharath C. Koorathota, Jie S. Li, Antonio Khalil Moretti, Juliana Freire, Madeleine Udell

We use these embeddings in a neural architecture to learn the distance between best-performing pipelines.

AutoML

New Era of Deeplearning-Based Malware Intrusion Detection: The Malware Detection and Prediction Based On Deep Learning

no code implementations19 Jul 2019 Shuqiang Lu, Lingyun Ying, Wenjie Lin, Yu Wang, Meining Nie, Kaiwen Shen, Lu Liu, Haixin Duan

With the development of artificial intelligence algorithms like deep learning models and the successful applications in many different fields, further similar trails of deep learning technology have been made in cyber security area.

Clustering General Classification +2

Generating Responses with a Specific Emotion in Dialog

no code implementations ACL 2019 Zhenqiao Song, Xiaoqing Zheng, Lu Liu, Mu Xu, Xuanjing Huang

It is desirable for dialog systems to have capability to express specific emotions during a conversation, which has a direct, quantifiable impact on improvement of their usability and user satisfaction.

MahiNet: A Neural Network for Many-Class Few-Shot Learning with Class Hierarchy

no code implementations ICLR 2019 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

It addresses the ``many-class'' problem by exploring the class hierarchy, e. g., the coarse-class label that covers a subset of fine classes, which helps to narrow down the candidates for the fine class and is cheaper to obtain.

Few-Shot Learning General Classification

Certainty Driven Consistency Loss on Multi-Teacher Networks for Semi-Supervised Learning

no code implementations17 Jan 2019 Lu Liu, Robby T. Tan

Specifically, we propose two approaches, i. e. Filtering CCL and Temperature CCL to either filter out uncertain predictions or pay less attention on them in the consistency regularization.

From Plots to Endings: A Reinforced Pointer Generator for Story Ending Generation

no code implementations11 Jan 2019 Yan Zhao, Lu Liu, Chunhua Liu, Ruoyao Yang, Dong Yu

We introduce a new task named Story Ending Generation (SEG), whic-h aims at generating a coherent story ending from a sequence of story plot.

Loss Guided Activation for Action Recognition in Still Images

no code implementations11 Dec 2018 Lu Liu, Robby T. Tan, ShaoDi You

This requirement of bounding boxes as part of the input is needed to enable the methods to ignore irrelevant contexts and extract only human features.

Action Recognition In Still Images

Encoding Temporal Markov Dynamics in Graph for Visualizing and Mining Time Series

1 code implementation24 Oct 2016 Lu Liu, Zhiguang Wang

Time series and signals are attracting more attention across statistics, machine learning and pattern recognition as it appears widely in the industry especially in sensor and IoT related research and applications, but few advances has been achieved in effective time series visual analytics and interaction due to its temporal dimensionality and complex dynamics.

General Classification Time Series +1

Cannot find the paper you are looking for? You can Submit a new open access paper.