no code implementations • 12 May 2022 • Ho Hin Lee, Yucheng Tang, Riqiang Gao, Qi Yang, Xin Yu, Shunxing Bao, James G. Terry, J. Jeffrey Carr, Yuankai Huo, Bennett A. Landman
In this paper, we propose a novel unsupervised approach that leverages pairwise contrast-enhanced CT (CECT) context to compute non-contrast segmentation without ground-truth label.
1 code implementation • 7 Mar 2022 • Han Liu, Yubo Fan, Hao Li, Jiacheng Wang, Dewei Hu, Can Cui, Ho Hin Lee, Ipek Oguz
First, we devise a plug-and-play dynamic head and adopt a filter scaling strategy to improve the expressiveness of the network.
no code implementations • 4 Mar 2022 • Xin Yu, Yucheng Tang, Yinchi Zhou, Riqiang Gao, Qi Yang, Ho Hin Lee, Thomas Li, Shunxing Bao, Yuankai Huo, Zhoubing Xu, Thomas A. Lasko, Richard G. Abramson, Bennett A. Landman
Efficiently quantifying renal structures can provide distinct spatial context and facilitate biomarker discovery for kidney morphology.
no code implementations • MICCAI Workshop COMPAY 2021 • Shunxing Bao, Yucheng Tang, Ho Hin Lee, Riqiang Gao, Sophie Chiron, Ilwoo Lyu, Lori A. Coburn, Keith T. Wilson, Joseph T. Roland, Bennett A. Landman, Yuankai Huo
Our contribution is three-fold: (1) a single deep network framework is proposed to tackle missing stain in MxIF; (2) the proposed 'N-to-N' strategy reduces theoretical four years of computational time to 20 hours when covering all possible missing stains scenarios, with up to five missing stains (e. g., '(N-1)-to-1', '(N-2)-to-2'); and (3) this work is the first comprehensive experimental study of investigating cross-stain synthesis in MxIF.
no code implementations • 25 Jul 2021 • Riqiang Gao, Yucheng Tang, Kaiwen Xu, Ho Hin Lee, Steve Deppen, Kim Sandler, Pierre Massion, Thomas A. Lasko, Yuankai Huo, Bennett A. Landman
To our knowledge, it is the first generative adversarial model that addresses multi-modal missing imputation by modeling the joint distribution of image and non-image data.
no code implementations • 3 Jun 2021 • Ho Hin Lee, Yucheng Tang, Qi Yang, Xin Yu, Shunxing Bao, Leon Y. Cai, Lucas W. Remedios, Bennett A. Landman, Yuankai Huo
Medical image segmentation, or computing voxelwise semantic masks, is a fundamental yet challenging task to compute a voxel-level semantic mask.
1 code implementation • 23 Dec 2020 • Ho Hin Lee, Yucheng Tang, Shunxing Bao, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
We combine the anatomical prior with corresponding extracted patches to preserve the anatomical locations and boundary information for performing high-resolution segmentation across all organs in a single model.
no code implementations • 23 Dec 2020 • Ho Hin Lee, Yucheng Tang, Kaiwen Xu, Shunxing Bao, Agnes B. Fogo, Raymond Harris, Mark P. de Caestecker, Mattias Heinrich, Jeffrey M. Spraggins, Yuankai Huo, Bennett A. Landman
However, there is no abdominal and retroperitoneal organs atlas framework for multi-contrast CT.
no code implementations • 10 Feb 2020 • Yuchen Xu, Olivia Tang, Yucheng Tang, Ho Hin Lee, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
We built on a pre-trained 3D U-Net model for abdominal multi-organ segmentation and augmented the dataset either with outlier data (e. g., exemplars for which the baseline algorithm failed) or inliers (e. g., exemplars for which the baseline algorithm worked).
no code implementations • 10 Feb 2020 • Yuchen Xu, Olivia Tang, Yucheng Tang, Ho Hin Lee, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
A 2015 MICCAI challenge spurred substantial innovation in multi-organ abdominal CT segmentation with both traditional and deep learning methods.
no code implementations • 14 Nov 2019 • Yucheng Tang, Ho Hin Lee, Yuchen Xu, Olivia Tang, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Camilo Bermudez, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
Dynamic contrast enhanced computed tomography (CT) is an imaging technique that provides critical information on the relationship of vascular structure and dynamics in the context of underlying anatomy.
no code implementations • 12 Nov 2019 • Ho Hin Lee, Yucheng Tang, Olivia Tang, Yuchen Xu, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
The contributions of the proposed method are threefold: We show that (1) the QA scores can be used as a loss function to perform semi-supervised learning for unlabeled data, (2) the well trained discriminator is learnt by QA score rather than traditional true/false, and (3) the performance of multi-organ segmentation on unlabeled datasets can be fine-tuned with more robust and higher accuracy than the original baseline method.